Scenario analysis via custom shocks
In this tutorial we will illustrate how to perform a scenario analysis by running the model multiple times under a specific shock and comparing the results with the unshocked model.
import BeforeIT as Bit
import StatsBase: mean, std
using Plots
parameters = Bit.AUSTRIA2010Q1.parameters;
initial_conditions = Bit.AUSTRIA2010Q1.initial_conditions;
Initialise the model
model = Bit.Model(parameters, initial_conditions);
Simulate the baseline model for T quarters, N_reps times, and collect the data
T = 16
N_reps = 64
model_vec_baseline = Bit.ensemblerun(model, T, N_reps);
Now, apply a shock to the model and simulate it again. A shock is simply a function that takes the model and changes some of its parameters for a specific time period. We do this by first defining a "struct" with useful attributes. For example, we can define an productivity and a consumption shock with the following structs
struct ProductivityShock
productivity_multiplier::Float64 # productivity multiplier
end
struct ConsumptionShock
consumption_multiplier::Float64 # productivity multiplier
final_time::Int
end
and then by making the structs callable functions that change the parameters of the model, this is done in Julia using the syntax below
A permanent change in the labour productivities by the factor s.productivity_multiplier
function (s::ProductivityShock)(model::Bit.Model)
return model.firms.alpha_bar_i .= model.firms.alpha_bar_i .* s.productivity_multiplier
end
A temporary change in the propensity to consume model.prop.psi by the factor s.consumption_multiplier
function (s::ConsumptionShock)(model::Bit.Model)
return if model.agg.t == 1
model.prop.psi = model.prop.psi * s.consumption_multiplier
elseif model.agg.t == s.final_time
model.prop.psi = model.prop.psi / s.consumption_multiplier
end
end
Define specific shocks, for example a 2% increase in productivity
productivity_shock = ProductivityShock(1.02)
Main.ProductivityShock(1.02)
or a 4 quarters long 2% increase in consumption
consumption_shock = ConsumptionShock(1.02, 4)
Main.ConsumptionShock(1.02, 4)
Simulate the model with the shock
model_vec_shocked = Bit.ensemblerun(model, T, N_reps; shock = consumption_shock);
extract the data vectors from the model vectors
data_vector_baseline = Bit.DataVector(model_vec_baseline);
data_vector_shocked = Bit.DataVector(model_vec_shocked);
Compute mean and standard error of GDP for the baseline and shocked simulations
mean_gdp_baseline = mean(data_vector_baseline.real_gdp, dims = 2)
mean_gdp_shocked = mean(data_vector_shocked.real_gdp, dims = 2)
sem_gdp_baseline = std(data_vector_baseline.real_gdp, dims = 2) / sqrt(N_reps)
sem_gdp_shocked = std(data_vector_shocked.real_gdp, dims = 2) / sqrt(N_reps)
17×1 Matrix{Float64}:
0.0
63.88983724176731
84.37656512352797
90.74939654290017
107.51313396058657
111.66494872482971
131.357091117824
130.65742773904924
143.46237543306944
163.26740123389737
177.54152462593822
183.03957493930352
206.1045792035031
211.72267431241494
208.54089820582178
219.3901544457281
227.33726320628224
Compute the ratio of shocked to baseline GDP
gdp_ratio = mean_gdp_shocked ./ mean_gdp_baseline
17×1 Matrix{Float64}:
1.0
1.0005280214959482
1.0038503001069992
1.006575160469475
1.0072045234055664
1.0051334989840073
1.0040356474427807
1.005748071574165
1.0082342101088997
1.0054281054505034
1.0059300567685245
1.0053358982823126
1.0058650765349735
1.004685861145325
1.004621660981743
1.005045800668616
1.0057629519708766
the standard error on a ratio of two variables is computed with the error propagation formula
sem_gdp_ratio = gdp_ratio .* ((sem_gdp_baseline ./ mean_gdp_baseline) .^ 2 .+ (sem_gdp_shocked ./ mean_gdp_shocked) .^ 2) .^ 0.5
17×1 Matrix{Float64}:
0.0
0.0012186804992545476
0.0015866512001014726
0.0017728811408221428
0.002050526253215954
0.0024080714129641576
0.0026732803251819474
0.0027226383598533397
0.002861929690861746
0.0031313062794118755
0.0034426892957919236
0.003587113060171621
0.003926882693752494
0.003999913939585363
0.0040944399278720804
0.004146966542825984
0.0043462045203262675
Finally, we can plot the impulse response curve
plot(
1:(T + 1),
gdp_ratio,
ribbon = sem_gdp_ratio,
fillalpha = 0.2,
label = "",
xlabel = "quarters",
ylabel = "GDP change",
)
We can save the figure using: savefig("gdp_shock.png")