Scenario analysis via custom shocks
In this tutorial we will illustrate how to perform a scenario analysis by running the model multiple times under a specific shock and comparing the results with the unshocked model.
import BeforeIT as Bit
import StatsBase: mean, std
using Plots
parameters = Bit.AUSTRIA2010Q1.parameters;
initial_conditions = Bit.AUSTRIA2010Q1.initial_conditions;Initialise the model
model = Bit.Model(parameters, initial_conditions);Simulate the baseline model for T quarters, N_reps times, and collect the data
T = 16
n_sims = 64
model_vec_baseline = Bit.ensemblerun!((deepcopy(model) for _ in 1:n_sims), T);Now, apply a shock to the model and simulate it again. A shock is simply a function that takes the model and changes some of its parameters for a specific time period. We do this by first defining a "struct" with useful attributes. For example, we can define an productivity and a consumption shock with the following structs
struct ProductivityShock
productivity_multiplier::Float64 # productivity multiplier
end
struct ConsumptionShock
consumption_multiplier::Float64 # productivity multiplier
final_time::Int
endand then by making the structs callable functions that change the parameters of the model, this is done in Julia using the syntax below
A permanent change in the labour productivities by the factor s.productivity_multiplier
function (s::ProductivityShock)(model::Bit.Model)
return model.firms.alpha_bar_i .= model.firms.alpha_bar_i .* s.productivity_multiplier
endA temporary change in the propensity to consume model.prop.psi by the factor s.consumption_multiplier
function (s::ConsumptionShock)(model::Bit.Model)
return if model.agg.t == 1
model.prop.psi = model.prop.psi * s.consumption_multiplier
elseif model.agg.t == s.final_time
model.prop.psi = model.prop.psi / s.consumption_multiplier
end
endDefine specific shocks, for example a 2% increase in productivity
productivity_shock = ProductivityShock(1.02)Main.ProductivityShock(1.02)or a 4 quarters long 2% increase in consumption
consumption_shock = ConsumptionShock(1.02, 4)Main.ConsumptionShock(1.02, 4)Simulate the model with the shock
model_vec_shocked = Bit.ensemblerun!((deepcopy(model) for _ in 1:n_sims), T; shock! = consumption_shock);extract the data vectors from the model vectors
data_vector_baseline = Bit.DataVector(model_vec_baseline);
data_vector_shocked = Bit.DataVector(model_vec_shocked);Compute mean and standard error of GDP for the baseline and shocked simulations
mean_gdp_baseline = mean(data_vector_baseline.real_gdp, dims = 2)
mean_gdp_shocked = mean(data_vector_shocked.real_gdp, dims = 2)
sem_gdp_baseline = std(data_vector_baseline.real_gdp, dims = 2) / sqrt(n_sims)
sem_gdp_shocked = std(data_vector_shocked.real_gdp, dims = 2) / sqrt(n_sims)17×1 Matrix{Float64}:
1.8333689901882087e-12
54.45416808182842
79.68394965459767
88.41524987290627
95.49500478021626
112.36130474852348
126.14454765069188
148.4427705474358
170.33365312049492
192.59660367499382
209.61338321989257
211.570250114503
218.2802665268977
220.35543119919004
234.246412247767
246.4277338555497
259.98520875275767Compute the ratio of shocked to baseline GDP
gdp_ratio = mean_gdp_shocked ./ mean_gdp_baseline17×1 Matrix{Float64}:
1.0
0.9998622967809462
1.0043886403709754
1.009184620204802
1.0079675526698209
1.0033167736664022
1.0008062382861354
0.9990685287041411
0.9989537797461749
0.9974868106442034
0.9981107949744432
0.9979237543105981
0.9999611740495508
0.997757858211183
0.9999595666157431
0.9998626991172047
1.0013918176241163the standard error on a ratio of two variables is computed with the error propagation formula
sem_gdp_ratio = gdp_ratio .* ((sem_gdp_baseline ./ mean_gdp_baseline) .^ 2 .+ (sem_gdp_shocked ./ mean_gdp_shocked) .^ 2) .^ 0.517×1 Matrix{Float64}:
3.580093467121083e-17
0.0010625422061316047
0.0014233670669707525
0.001616857297786773
0.0018427238102715602
0.002012003230877796
0.002405303995167028
0.0026526665665828546
0.0030481537111431457
0.003318326886565313
0.003572258600082999
0.003678787270421965
0.0038174849472746445
0.0038295470775487938
0.004109261152026839
0.004479773610399598
0.00469631483547442Finally, we can plot the impulse response curve
plot(
1:(T + 1),
gdp_ratio,
ribbon = sem_gdp_ratio,
fillalpha = 0.2,
label = "",
xlabel = "quarters",
ylabel = "GDP change",
)We can save the figure using: savefig("gdp_shock.png")