Scenario analysis via custom shocks
In this tutorial we will illustrate how to perform a scenario analysis by running the model multiple times under a specific shock and comparing the results with the unshocked model.
import BeforeIT as Bit
import StatsBase: mean, std
using Plots
parameters = Bit.AUSTRIA2010Q1.parameters;
initial_conditions = Bit.AUSTRIA2010Q1.initial_conditions;Initialise the model
model = Bit.Model(parameters, initial_conditions);Simulate the baseline model for T quarters, N_reps times, and collect the data
T = 16
n_sims = 64
model_vec_baseline = Bit.ensemblerun!((deepcopy(model) for _ in 1:n_sims), T);Now, apply a shock to the model and simulate it again. A shock is simply a function that takes the model and changes some of its parameters for a specific time period. We do this by first defining a "struct" with useful attributes. For example, we can define an productivity and a consumption shock with the following structs
struct ProductivityShock
productivity_multiplier::Float64 # productivity multiplier
end
struct ConsumptionShock
consumption_multiplier::Float64 # productivity multiplier
final_time::Int
endand then by making the structs callable functions that change the parameters of the model, this is done in Julia using the syntax below
A permanent change in the labour productivities by the factor s.productivity_multiplier
function (s::ProductivityShock)(model::Bit.Model)
return model.firms.alpha_bar_i .= model.firms.alpha_bar_i .* s.productivity_multiplier
endA temporary change in the propensity to consume model.prop.psi by the factor s.consumption_multiplier
function (s::ConsumptionShock)(model::Bit.Model)
return if model.agg.t == 1
model.prop.psi = model.prop.psi * s.consumption_multiplier
elseif model.agg.t == s.final_time
model.prop.psi = model.prop.psi / s.consumption_multiplier
end
endDefine specific shocks, for example a 2% increase in productivity
productivity_shock = ProductivityShock(1.02)Main.ProductivityShock(1.02)or a 4 quarters long 2% increase in consumption
consumption_shock = ConsumptionShock(1.02, 4)Main.ConsumptionShock(1.02, 4)Simulate the model with the shock
model_vec_shocked = Bit.ensemblerun!((deepcopy(model) for _ in 1:n_sims), T; shock! = consumption_shock);extract the data vectors from the model vectors
data_vector_baseline = Bit.DataVector(model_vec_baseline);
data_vector_shocked = Bit.DataVector(model_vec_shocked);Compute mean and standard error of GDP for the baseline and shocked simulations
mean_gdp_baseline = mean(data_vector_baseline.real_gdp, dims = 2)
mean_gdp_shocked = mean(data_vector_shocked.real_gdp, dims = 2)
sem_gdp_baseline = std(data_vector_baseline.real_gdp, dims = 2) / sqrt(n_sims)
sem_gdp_shocked = std(data_vector_shocked.real_gdp, dims = 2) / sqrt(n_sims)17×1 Matrix{Float64}:
0.0
62.38034349862752
66.74306221818445
90.50682909387842
94.9223915538385
101.23178284808925
125.3209776045712
143.15927980218254
159.0638847101627
169.26884579231952
179.7914852245972
183.0584029670968
177.597233942538
181.62262849014647
201.3340124914622
204.16078749232594
217.1217757813231Compute the ratio of shocked to baseline GDP
gdp_ratio = mean_gdp_shocked ./ mean_gdp_baseline17×1 Matrix{Float64}:
1.0
0.9997667919001694
1.0047638964767707
1.0085135101048244
1.0079072296942388
1.0039113825297838
1.0024587265848417
1.0010625269256113
1.0005976474556584
0.9992281563802026
0.998505414725525
1.0012944570818023
1.002225161704196
1.0041971304502935
1.0021243487409304
1.0035467943500556
1.0043203674546137the standard error on a ratio of two variables is computed with the error propagation formula
sem_gdp_ratio = gdp_ratio .* ((sem_gdp_baseline ./ mean_gdp_baseline) .^ 2 .+ (sem_gdp_shocked ./ mean_gdp_shocked) .^ 2) .^ 0.517×1 Matrix{Float64}:
0.0
0.0011054420793262835
0.001310732277949278
0.001611931988660452
0.0018940443573763042
0.002237879888223368
0.002568526975882533
0.002687407022488961
0.0029547263338137028
0.003208374274696713
0.0033702731571916334
0.0034400773561801055
0.003504414386293318
0.003504869138164534
0.003849726429477901
0.004132578429535682
0.0043064026611760306Finally, we can plot the impulse response curve
plot(
1:(T + 1),
gdp_ratio,
ribbon = sem_gdp_ratio,
fillalpha = 0.2,
label = "",
xlabel = "quarters",
ylabel = "GDP change",
)We can save the figure using: savefig("gdp_shock.png")