Scenario analysis via custom shocks
In this tutorial we will illustrate how to perform a scenario analysis by running the model multiple times under a specific shock and comparing the results with the unshocked model.
import BeforeIT as Bit
import StatsBase: mean, std
using Plots
parameters = Bit.AUSTRIA2010Q1.parameters;
initial_conditions = Bit.AUSTRIA2010Q1.initial_conditions;
Initialise the model
model = Bit.Model(parameters, initial_conditions);
Simulate the baseline model for T quarters, N_reps times, and collect the data
T = 16
n_sims = 64
model_vec_baseline = Bit.ensemblerun!((deepcopy(model) for _ in 1:n_sims), T);
Now, apply a shock to the model and simulate it again. A shock is simply a function that takes the model and changes some of its parameters for a specific time period. We do this by first defining a "struct" with useful attributes. For example, we can define an productivity and a consumption shock with the following structs
struct ProductivityShock
productivity_multiplier::Float64 # productivity multiplier
end
struct ConsumptionShock
consumption_multiplier::Float64 # productivity multiplier
final_time::Int
end
and then by making the structs callable functions that change the parameters of the model, this is done in Julia using the syntax below
A permanent change in the labour productivities by the factor s.productivity_multiplier
function (s::ProductivityShock)(model::Bit.Model)
return model.firms.alpha_bar_i .= model.firms.alpha_bar_i .* s.productivity_multiplier
end
A temporary change in the propensity to consume model.prop.psi by the factor s.consumption_multiplier
function (s::ConsumptionShock)(model::Bit.Model)
return if model.agg.t == 1
model.prop.psi = model.prop.psi * s.consumption_multiplier
elseif model.agg.t == s.final_time
model.prop.psi = model.prop.psi / s.consumption_multiplier
end
end
Define specific shocks, for example a 2% increase in productivity
productivity_shock = ProductivityShock(1.02)
Main.ProductivityShock(1.02)
or a 4 quarters long 2% increase in consumption
consumption_shock = ConsumptionShock(1.02, 4)
Main.ConsumptionShock(1.02, 4)
Simulate the model with the shock
model_vec_shocked = Bit.ensemblerun!((deepcopy(model) for _ in 1:n_sims), T; shock = consumption_shock);
extract the data vectors from the model vectors
data_vector_baseline = Bit.DataVector(model_vec_baseline);
data_vector_shocked = Bit.DataVector(model_vec_shocked);
Compute mean and standard error of GDP for the baseline and shocked simulations
mean_gdp_baseline = mean(data_vector_baseline.real_gdp, dims = 2)
mean_gdp_shocked = mean(data_vector_shocked.real_gdp, dims = 2)
sem_gdp_baseline = std(data_vector_baseline.real_gdp, dims = 2) / sqrt(n_sims)
sem_gdp_shocked = std(data_vector_shocked.real_gdp, dims = 2) / sqrt(n_sims)
17×1 Matrix{Float64}:
0.0
56.269612041198165
72.52489133267494
86.8993152958971
102.10158603934647
119.72759705294912
140.1113630711812
137.17150533504156
145.08502588783185
152.91542316556385
172.35538974059105
181.47010308717452
205.87162650351445
208.15677844748646
228.42185601548533
239.5189183651272
247.15848663768477
Compute the ratio of shocked to baseline GDP
gdp_ratio = mean_gdp_shocked ./ mean_gdp_baseline
17×1 Matrix{Float64}:
1.0
0.9992757012693634
1.0052859696742897
1.0084833122329138
1.0096252377348909
1.005835297306911
1.0035517886563807
1.0005522105221638
0.9998105155238486
1.0002083600689418
0.9981928164102203
0.9989464768647349
0.9971873664034875
0.9984653344614741
0.9980062936531402
0.9966822624816565
0.9951259655275392
the standard error on a ratio of two variables is computed with the error propagation formula
sem_gdp_ratio = gdp_ratio .* ((sem_gdp_baseline ./ mean_gdp_baseline) .^ 2 .+ (sem_gdp_shocked ./ mean_gdp_shocked) .^ 2) .^ 0.5
17×1 Matrix{Float64}:
0.0
0.001111909045907979
0.001375823085496002
0.001629265590740175
0.0019355786406233151
0.0022030038974277305
0.0025479369198926436
0.0027481901966868987
0.0029285093514490753
0.0031358726159803987
0.003591940767301248
0.0038270083263068117
0.004191387175124892
0.004341277033979403
0.004620214335595352
0.0047487270509175014
0.004912980016502065
Finally, we can plot the impulse response curve
plot(
1:(T + 1),
gdp_ratio,
ribbon = sem_gdp_ratio,
fillalpha = 0.2,
label = "",
xlabel = "quarters",
ylabel = "GDP change",
)
We can save the figure using: savefig("gdp_shock.png")