Skip to content

Overview of the plotting tools of black-it

import numpy as np
import matplotlib.pyplot as plt

Let us assume we have performed a calibration and we have stored our results in a given folder. In this tutotial we will go through the black-it tools to quickly analyse the calibration results.

saving_folder = "saving_folder"

Analyse the action of the different samplers

from black_it.plot.plot_results import plot_sampling
plot_sampling(saving_folder)
from black_it.plot.plot_results import plot_sampling_interact
plot_sampling_interact(saving_folder)
interactive(children=(Dropdown(description='batch_nums', options={'from 0 to 3': [0, 1, 2, 3], 'from 4 to 6': …

Analyse the loss landscape explored

from black_it.plot.plot_results import plot_losses
plot_losses(saving_folder)
from black_it.plot.plot_results import plot_losses_interact
plot_losses_interact(saving_folder)
interactive(children=(Dropdown(description='method_num', options={'RandomUniformSampler': 0, 'RSequenceSampler…

Analyse the calibration convergence

from black_it.plot.plot_results import plot_convergence
plot_convergence(saving_folder)